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Abstract. The energy dependence of the Cronin momentum for p+A and A+A collisions in the saturation
model are calculated. This dependence is consistent with simple dimensional considerations and can be
used to test the validity of the saturation model. It gives the possibility to distinguish the different
variants of the saturation model with precise experimental data and to measure the x dependence of the
saturation momentum.

1 Introduction

The Cronin effect [1] (i.e., the observation that the ratio
of the yield of particles in p + A and A + A collisions to
the one in p + p collisions has a maximum at some inter-
mediate transverse momentum) is one of the remarkable
effects in high energy nuclear collisions. Both the satura-
tion model [2] and pQCD describe this behavior well. It is
possible that these models can be distinguished by means
of some subtle prediction for the Cronin effect. Since there
are also many variants of the saturation model we should
consider this case first. The first issue here is to choose a
parameter for prediction. There are three parameters in
the Cronin effect that we can measure: the momentum
where the Cronin ratio has a maximum (let us call this
the Cronin momentum qC), the value of the maximum of
RC, and the momentum where the Cronin ratio is unity,
qu. We know that the value of the Cronin ratio in A + A
collisions has some normalization uncertainty (theoretical
and experimental), and therefore the parameters RC, qu
are not good ones to make predictions. At the same time
the Cronin momentum qC does not depend on the normal-
ization and therefore is the best candidate for this purpose.
The second issue is to choose the appropriate kinematical
range. It is well known that the saturation model works
well only in the mid-rapidity region and therefore let us
consider central rapidity p+A collisions only. There is only
one semihard scale in the saturation model which governs
the momentum dependence of the differential cross-section
dσpA

dydq2 (here y is the rapidity and q is the transverse momen-
tum of the particles produced). This scale is the saturation
momentum Qs. Since we have only one semihard scale the
Cronin momentum can only depend on this scale. Dimen-
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sional considerations give us the only possible choice for
the equation which relates Qs and qC:

qC = βQs, (1)

where β is some dimensionless constant. It is well known
that the saturation momentum Qs is not a constant. It
depends on the Bjorken variable x which in this process is
defined by the simple formula

x =
q√
s

. (2)

Since qC is the only known momentum therefore, instead
of (1) we will have

qC = βQs

(
β1qC√

s

)
, (3)

where β1 is another dimensionless constant.
Qs(x) can easily be defined. Using the geometric scaling

effect for small x we have

Q2
s (x) = A1/3Q2

s0

(x0

x

)λ

, (4)

where λ = 0.3 is the geometric scaling constant and Qs0, x0
are some parameters whose exact values can be defined
using the fact that Qs is equal to 1–2 GeV in a reaction
with an Au nucleus at

√
s = 200 GeV. Therefore (3) can

be solved easily. It results in the following expression for
qC:

qC = q0
CA

1
3(2+λ)

√
s

λ
2+λ . (5)

If we take logarithms of both parts we have

ln(qC) = a + b ln(
√

s), (6)
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where the parameters a and b are defined by

a =
1

3(2 + λ)
ln(A) + ln(q0

C) , (7)

b =
λ

2 + λ
= 0.1304 .

Equation (7) for the parameters a and b is based on the
fact that Qs is the only momentum scale in the process.
However, a soft scale ΛQCD exists and it is obvious that its
existence will change (6). Therefore, we should calculate
the Cronin momentum numerically for different energies
and check the validity of (6).

2 Cronin ratio in the saturation model

Let us consider the Cronin ratio for p+A collisions (in this
article we make all calculations only for the Au nucleus)

RpA =
dσpA

dyd2q

A dσpp

dyd2q

. (8)

As we stated before we consider the central rapidity re-
gion only (i.e. y = 0). In the saturation model the gluon
production cross-section can be expressed as

dσpA

d2q dy
=

2 αs

CF

1
q2

∫
d2k φp(x1, q

2) φA(x2, (q −k)2), (9)

where φA,p is the unintegrated gluon distribution of the
nucleus and proton, and x1, x2 are defined by

x1 =
q√
s
e−y, x2 =

q√
s
ey . (10)

In leading logarithmic order we can rewrite (9) in the fol-
lowing form [4]:

dσpA

d2q dy
=

2 αs

CF

1
q2 (11)

× (x1Gp(x1, q
2)φA(x2, q

2) + x2GA(x2, q
2)φp(x1, q

2)
)
,

where xG(x, q2) is the gluon distribution function which
is related to φ(x, k2) by the following formula:

xG(x, q2) =
∫ q

Λ

φ(x, k2)dk2 . (12)

The same formula can be applied to p + p collisions,

dσpp

d2q dy
=

2 αs

CF

1
q2 (13)

× (x1Gp(x1, q
2)φp(x2, q

2) + x2Gp(x2, q
2)φp(x1, q

2)
)
.

Let us suppose that in the unintegrated gluon distribution
function of the proton φp(x, q2) does not depend on x
considered the kinematical region and that

φp(x, q2) =
αsCF

π
1
q2 . (14)

Then the following relation can bewritten for theCronin ra-
tio:

RpA =
1
A

(
φA(x2, q

2)
φp(x2, q2)

+
GA(x2, q

2)
Gp(x2, q2)

)
, (15)

or, since we suppose we have the central rapidity region,

RpA =
1
A

(
φA(x, q2)
φp(x, q2)

+
GA(x, q2)
Gp(x, q2)

)
, (16)

where x = q√
s
.

All we need now is the expression for the unintegrated
gluondistribution function. Let us consider threemodels for
the gluon distribution function: the Kharzeev–Levin–Nardi
model proposed in [3], the “dipole” model and McLerran–
Venugopalan model proposed in [5, 6]. It should be men-
tioned that the “dipole” model is the only one for which a
theoretical proof [11] for (9) exists. Nevertheless we make
calculations for all of them.

3 Kharzeev–Levin–Nardi model

Let us consider the simplest form of this model. The unin-
tegrated gluon distribution function φ(x, q2) can be writ-
ten as

φA(x, q2) = φ0
A, q < Qs(x), (17)

φA(x, q2) = φ0
A

Q2
s (x)
q2 , q > Qs(x),

where φ0
A is a normalization factor.

Therefore we will have for the gluon distribution func-
tion G(x, q2) the following expression:

xGA(x, q2) = φ0
A

(
q2 − Λ2

QCD
)

(18)

for q < Qs(x) and

xGA(x, q2) = Q2
s (x)φ0

A

(
ln
(

q2

Q2
s (x)

)
+ 1 − Λ2

QCD

Q2
s (x)

)

(19)
for q > Qs(x).

Then we will have the following expression for the
Cronin ratio:

RpA =
φ0

Aπ
AαsCF


q2 +

q2 − Λ2
QCD

ln
(

q2

Λ2
QCD

)

 (20)

for q < Qs(x) and

RpA =
φ0

AπQ2
s (x)

AαsCF


1 +

ln
(

q2

Q2
s (x)

)
+
(
1 − Λ2

QCD
Q2

s (x)

)
ln
(

q2

Λ2
QCD

)


(21)

for q > Qs(x).
If we look at (20) and (21) we see that the Cronin ratio

RpA here is a non-decreasing function of the momentum
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Fig. 1. Cronin ratio for Kharzeev–Levin–Nardi gluon distri-
bution function for p+A collisions

√
s = 200 GeV (solid curve)

and
√

s = 1700 GeV (dashed curve)

q, and therefore it is not clear if there is any Cronin like
behavior in this model. However, it should be mentioned
that x depends on q by the relation x = q√

s
, and, since

we have (4), RpA has a maximum at some momentum
qC (Fig. 1) which value is approximately defined by the
following equation:

qC = Qs

(
qC√

s

)
(22)

and is modified slightly by the logarithmic terms in (21).
Nevertheless, we have a qC energy dependence similar to (6)
with slope b = 0.1042.

4 “Dipole” model

In the “dipole” model we can relate the unintegrated gluon
distribution function to the gluon dipole cross-section. This
was done in [9,11] and the expression for the unintegrated
gluon distribution function can bewritten as (let us suppose
that the nucleus is cylindrical)

φA(x, q2) =
4SACF

αs(2π)3

∫
d2r e−iqr ∇2

rNG(r, x)) (23)

or

φA(x, q2) =
4SACF

αs(2π)2

∫
dr J0(qr)r∇2

rNG(r, x), (24)

where J0(x) is Bessel function.
We will have the following relation for the gluon dis-

tribution function G(x, q2):

xGA(x, q2) =
8SACF

αs(2π)2

∫
dr kJ1(kr)

∣∣k=q

k=Λ
∇2

rNG(r, x) .

(25)
It is well known that the Balitsky–Kovchegov [8] equation
defines the x-behavior of the dipole scattering cross-section
NG(r, x). Since it is not solved analytically for now we will

not use it here. It was shown in [10] that using NG(r, x)
from the Balitsky–Kovchegov equation lowers RpA when√

s increases. Therefore, it is interesting to check the va-
lidity of (6) in this case. These calculations can be found
elsewhere [12] and we choose a simpler way here.

Let us define ad hoc that

NG(r, x) = 1 − e−r2Qs(x)2 ln(1/rΛ)/4, (26)

i.e. we put all x dependence in the Qs(x) definition. It is
obvious that we cannot use (26) directly since NG(r, x) does
not have a very good behavior for large r (i.e. if r → ∞ then
NG(r, x) becomes negative instead of unity). Therefore, we
should regularize (26) somehow. Let us regularize NG(r, x)
by the following prescription:

NG(r, x) = 1 − er2Qs(x)2(ln(rΛ)−
√

(ln(rΛ))2+ε2)+ln(r0Λ))/8,
(27)

and set r0 = 1√
eΛ

and ε < 1. (If ε is less than unity
then the result does not depend on its exact value.) It
should be noted that the final result does not depend on
the regularization scheme and we could regularize NG(r, x)
with a simpler prescription:

NG(r, x) = 1 − e−r2Qs(x)2 ln(1/rΛ)/4, r < r0, (28)

NG(r, x) = 1 − e−r2Qs(x)2 ln(1/r0Λ)/4, r > r0,

but this regularization is inconvenient since ∇2
rNG(r, x) is

singular, and we should also regularize ∇2
rNG(r, x) itself.

Using the regularized NG(r, x) and (24) and (25) the
Cronin ratio can be calculated numerically. Themomentum
dependence of the Cronin ratio (16) is presented in Fig. 2.
The position of the maximum (i.e. the Cronin momentum
qC) can easily be calculated numerically for different ener-
gies using this dependence. The result is presented in Fig. 4.
The slope calculated by the fitting procedure is equal to
b = 0.1120. It should be mentioned that the lines have a
different position, but they have almost the same slope,
approximately equal to the one calculated in (7).
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Fig. 2. Cronin ratio for the “dipole” gluon distribution func-
tion for p + A collisions for

√
s = 200 GeV (solid curve) and√

s = 1700 GeV (dashed curve)
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5 McLerran–Venugopalan model

In the McLerran–Venugopalan model the expression for the
unintegrated gluon distribution function was found in [5,6],
and it can be written as

φA(x, q2) (29)

=
4CF

αs(2π)3

∫
d2b d2r

e−iqr

r2

(
1 − e−r2Q2

s ln( 1
rΛ )/4

)
.

If we will consider a cylindrical nucleus we have

φA(x, q2) =
4SACF

αs(2π)3

∫
d2r

e−iqr

r2

(
1 − e−r2Q2

s ln( 1
rΛ )/4

)
,

(30)
or

φA(x, q2) =
4SACF

αs(2π)2

∫
dr

J0(qr)
r

(
1 − e−r2Q2

s ln( 1
rΛ )/4

)
.

(31)
However, it is better to use the expression proposed in [7]
which relates the unintegrated gluon distribution function
in the McLerran–Venugopalan model and the forward scat-
tering amplitude NG(r, x) of a gluon dipole on a nucleus.
According to [7] we will have for the gluon distribution func-
tion

φA(x, q2) =
4SA CF

αs (2π)2

∫
dr J0(qr)

1
r

NG(r, x). (32)

A similar expression can be written for the gluon dis-
tribution function G(x, q2):

xGA(x, q2) =
8SACF

αs(2π)3

∫
dr

kJ1(kr)
∣∣k=q

k=Λ

r2 NG(r, x). (33)

Like in the previous model the value of the Cronin ratio
and the Cronin momentum qC can easily be calculated
numerically. The result is presented in Figs. 3 and 4. Like
in the previous models we have a Cronin momentum energy
dependence similar to (6) with slope b = 0.1323.
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Fig. 3. Cronin ratio for the McLerran–Venugopalan gluon dis-
tribution function for p + A collisions for

√
s = 200 GeV (solid

curve) and
√

s = 1700 GeV (dashed curve)
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Fig. 4. Dependence of ln(qC) (for RpA) on ln(
√

s) for differ-
ent models: Kharzeev–Levin–Nardi (solid curve), McLerran–
Venugopalan (dashed curve), “dipole” (dot-dashed curve)

6 A + A collisions

Like in p+A collision in A+A collisions (we will consider
only the central rapidity region) there is only one semihard
scale Qs. Therefore, the energy dependence of the Cronin
momentum qC should be governed by the same relation (3).
We can apply all formulas above to this case, since we have
the following approximate relation for the Cronin ratio,
which is similar to (16):

RAA =
GA(x, p)
Gp(x, p)

φA(x, p)
φp(x, p)

. (34)

Calculating numerically the q dependence of the Cronin
ration for the models considered (Figs. 5, 6, and 7) at differ-
ent energies we have the same linear behavior for ln(qC) as
before (Fig. 8) and also have slopes consistent with (7). All
data summarized in Table 1 (for the “dipole” model only
points with

√
s > 500 GeV were taken for the slope calcu-

lation).
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Fig. 5. Cronin ratio for the Kharzeev–Levin–Nardi gluon dis-
tribution function for A + A collisions

√
s = 200 GeV (solid

curve) and
√

s = 1700 GeV (dashed curve)
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Fig. 6. Cronin ratio for the “dipole” gluon distribution func-
tion for A + A collisions for

√
s = 200 GeV (solid curve) and√

s = 1700 GeV (dashed curve)
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Fig. 7. Cronin ratio for the McLerran–Venugopalan gluon dis-
tribution function for A+A collisions for

√
s = 200 GeV (solid

curve) and
√

s = 1700 GeV (dashed curve)
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Fig. 8. Dependence of ln(qC)(for RAA) on ln(
√

s) for differ-
ent models: Kharzeev–Levin–Nardi (solid curve), McLerran–
Venugopalan (dashed curve), “dipole” (dot-dashed curve)

Table 1. Summary of slopes for different models in p + A and
A + A collisions

Model p + A A + A

Kharzeev–Levin–Nardi 0.1042 0.1485
McLerran–Venugopalan 0.1323 0.1383
“’Dipole” 0.1120 0.1244

7 Conclusion

We calculate the energy dependence of the Cronin mo-
mentum in several saturation-based models and show that
this dependence is consistent with a simple formula based
on geometric scaling only. This subtle prediction can be
used to test the validity of the saturation model. Since the
slope values are slightly different among different variants
of the saturation model we have the possibility to distin-
guish them. This requires more precise measurements of
the Cronin effect (at least in the middle momentum re-
gion) than those we have for now. These measurements
can in turn lead to a precise measurement of the x depen-
dence of the saturation momentum Qs(x). Since we do not
have a precise enough measurement of the Cronin effect
for now it is important to consider additional cases (these
calculations can be found elsewhere [12]), since differences
between the models could become more noticeable:
(1) It is well known that the dipole scattering cross-section
NG(r, x) which we set here in simple way can be cal-
culated on a solid theoretical basis using the Balitsky–
Kovchegov [8]. It is shown in [10] that using NG(r, x) from
the Balitsky–Kovchegov equation lowers RpA when

√
s in-

creases so it is important to check the validity of our results
in this case.
(2) In this article we consider the central rapidity region
only. This simplification sets a very simple dependence of
the Cronin momentum since we have only one semihard
scale. In the non-central rapidity region there are at least
two semihard scales (in A+A collisions) and the existence
of a second scale can change the result drastically.
(3) In the case of non-symmetric heavy nucleus collisions
(i.e. d+Au) we can have the situation when in non-central
nucleus collisions the two scales become equal and the
Cronin momentum dependence is similar to the A + A
case.
(4) It is also important to check the validity of our results
when we consider different centralities, since when we will
put the centrality dependence into account we have a con-
tinuous range of scales in the saturation model.
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